

In search of energy efficient architectural patterns

Gianantonio Me

Faculty of Science, Vrije Universiteit, De Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands

Universidad de Castilla-La Mancha, Paseo de la Universidad 4,
13071 Ciudad Real, Spain

g.me@vu.nl gianantonio.me@uclm.es

Coral Calero

University of Castilla-La Mancha, Department of
Technologies and Information Systems,

ALARCOS Research Group,
Paseo de la Universidad, 4 13071 Ciudad Real, Spain

coral.calero@uclm.es

Abstract— Nowadays software pervasively support human life.

That massive software presence poses environmental challenges,
due to the increasing resources consumption. Sustainability be-
comes a major concern for software engineering too. Software
engineers should deal with sustainable aspects and green quality
attributes. Software Architecture is an interesting domain where
to introduce green design decisions. Indeed, in the specific context
of software architecting, we primarily deal with quality issues.
Quality attributes should be early addressed in the design of sys-
tems. Therefore the main challenge for architects is to evaluate
the architecture fitness respect to competing quality attributes.
This work specifically focuses on Energy Efficiency in the context
of architectural patterns. Due to the lack of evidence so far, we
started from the assumption (literature-based) that Maintainabil-
ity is a quality attribute that shows an implication with Energy
Efficiency. We outline some hypothesis about potential relation-
ship between Maintainability and Energy Efficiency in the con-
text of architectural patterns. This work represents an attempt
on assess how established knowledge on patterns selection might
be challenged and eventually re-shaped by introducing in the
architecture evaluation process sustainable and green quality
dimensions.

Index Terms—Sustainability, Software Architecture,
Architecture Patterns, Quality Attributes, Green Software
Engineering.

I. INTRODUCTION

Sustainability is a major issue for our society. One aspect of
implementing sustainability is the need of cutting down energy
consumption trends, which requires new technical solutions.
Information Technology (IT) is on the front-line of this per-
spective. Indeed IT can support green behaviors (Green by IT)
or sustainability can be intrinsic in the process of building or
running IT artifacts (Green in IT) [1]. This work focuses on a
specific IT artifact, software, and in particular on the context of
software architecture. Indeed, software itself is responsible of
energy consumption trends and we are interested in increasing
the knowledge on how build up green software. Software En-
ergy Efficiency (EE) would reduce the usage of electrical ener-
gy by software artifacts [2]. Although Energy Efficiency does
not entirely represent sustainability, its specifications and char-
acteristics make this quality attribute as a good starting point
for bringing green issues in software engineering.

Software architecture builds the basis for quality software
systems. Defining this term is a potential dangerous activity
and it has been surrounded by a long debate (3). For instance,
some definitions identify software architecture in its structural

shape (components and connectors) and the connections that
coordinate the activities of those components [4]. Other defini-
tions go beyond structural elements such as algorithms, respon-
sibilities of design elements, protocol communication and data
access and structure. More, software architecture can be de-
fined as the output of a selection among design alternatives [5].
Another important definition put the stress on the architecture
as set of design decisions [6]. This last definition highlights the
role of decision-making in software architecture.

Chiefly, decisions have been taken regarding the quality tar-
gets. Architects should take decision regarding overall architec-
tures by balancing the different quality attributes which the
system needs to exhibit. In that evaluation, we have competing
quality attributes and it is not possible to address all the QAs at
the same degree. In practice we have to sacrifice some proper-
ties (or the level of them) for other properties. We observe
trade-offs among quality attributes. As outlined before an im-
portant quality dimension of sustainability is Energy Efficien-
cy. Energy Efficiency can be considered as a system quality
attribute. Our interest is in an early identification on how Ener-
gy Efficiency can re-shape the knowledge we have on the in-
teraction quality- architectural patterns. One quality attribute
that already shows interaction with green quality aspect is
Maintainability [7]. We will compare the scarce knowledge
available on the relationship between Maintainability and En-
ergy Efficiency to the established knowledge on Maintainabil-
ity and architectural patterns. The remained paper is organized
as following: Section II shortly describes related work, Section
III focused on the background, while Section IV shows the
potential interaction between Maintainability and Energy Effi-
ciency in the context of architectural patterns. Finally, Section
V explains threats to validity and Section VI presents Conclu-
sion and future work.

II. RELATED WORK

There are few works explicitly focused on green in software
architecture. For instance, in [8] an energy-layer in the software
architecture has been introduced. This energy layer has the
responsibility of measure energy consumption in data centers
and making services migrate to hosts more energy efficient.
Another approach appears in [9] where a business application
has been analyzed. The aim of the author is to analyze architec-
ture’s components in order to identify drivers of energy con-

sumption. Later, it is possible to modify/extend the architecture
in order to create energy savings. In [10] a model-based Energy
Efficiency analysis method has been introduced. The way cho-
sen by [10] follows the example of prediction models for other
quality attributes such performance. We have found only one
work only focused on Energy Efficiency and Architectural Pat-
terns1. In that work [11] some architectural patterns (distributed
systems architecture) have been assessed according to Energy
Consumption. The assessment has been made by an evaluation
framework that can support early architectural decisions ener-
gy-efficiency aware. The most intriguing finding of [11] is that,
in some case, combination of patterns allows to result less en-
ergy trend than the single pattern usage.

Interesting is the focus on green architectural tactics [12].
Green tactics are design-decisions that allow software lower
energy consumption. A similar approach has been followed by
[13] where appears the quality attribute Greenability. Under
this label some of the scenarios presented in [12] have been
grouped, for instance Energy Monitoring and Consolidation.

III. BACKGROUND

A. From Sustainability to Greenability

As reported before we are focusing on Energy Efficiency
(Greenability) as Quality Attribute. However, Green software
quality dimensions might be considered more than only Energy
Efficiency.

Sustainability is a broader concept and its definition de-
pends on the context factors [14] [15]. Indeed, sustainability
shows several dimensions such as social, environmental, tech-
nical and economic. In the context of Software Engineering
sustainability involves software development, maintenance and
usage and how those three processes use resources. Greenabil-
ity refers to the degree which a product lasts over time, opti-
mizing the parameters, the amounts of energy and the re-
sources used and Energy efficiency is the degree of efficiency
with which a software product consumes energy when perform-
ing its functions [16]. Energy Efficiency is also considered as
quality attribute in [17]. The difference between Energy Effi-
ciency and Greenability is that the former is a sub-
characteristic of the latter (the others sub-characteristics are
Resource Optimization, Capacity Optimization and Perdurabil-
ity) [16]. In this work we focus only on Energy Efficiency.

B. Architecture trade-off analysis method

Since we are interested in understanding how Energy Effi-
ciency compete/interact with others quality attributes, the Ar-
chitecture Tradeoff Analysis Method (ATAM) is an appropri-
ate framework. ATAM is aimed to understand the quality at-
tributes tradeoffs intrinsic in the architectures of software-
intensive systems [18] [19]. ATAM has been developed at the
Software Engineering Institute (SEI) and has been applied on a
wide range of architectures, such as air traffic control, financial
management, vehicle control etc. The aim of this structured

1 In that work the authors use the term “style”. We consider the term style and
pattern as equivalent. For that discussion see [24] and [25].

technique is to evaluate software architectures with respect to
multiple conflicting quality attributes: modifiability, security,
performance, availability, and so on. Quality attributes interact
and it involves that, by improving one quality attribute, the
other(s) becomes worse. It implies tradeoffs among competi-
tive quality attributes. ATAM is based on a spiral model of
design: candidate architectures are continuously refined as out-
come of analytic and risk mitigation processes [20].

C. Architecture patterns and quality

Architectural patterns and styles are recurrent solutions to
common problems [21] and they include knowledge on quality
attributes [22]. In the literature, patterns have been usually de-
scribed according to the functionality they deliver and the
strength or liability showed with respect to several quality at-
tributes. According to [22] strengths or liabilities assess the
importance of the impact of patterns on quality attributes. For
instance: a key strength or key liability determines if to use or
to avoid a pattern in a specific situation. In this line of reason-
ing, the degree which patterns impact on quality might deter-
mine architectural choices (i.e. adopting or avoiding a pattern
for a given design problem).

IV. HYPOTHESIS ON MAINTAINABILITY AND ENERGY

EFFICIENCY IN ARCHITECTURAL PATTERNS

In [7] we observe an early attempt to define the relationship
between Maintainability and Greenability. Maintainability has
been defined according to [23]: degree of effectiveness and
efficiency with which a product or system can be modified by
the intended maintainers. Greenability has been defined as the
degree of environmental friendliness of a software system,
based on its power consumption [7]. This last definition high-
lights the role of power consumption. Therefore, as stated be-
fore, for the purpose of this work, we focus on Energy Effi-
ciency. However, the terms Energy Efficiency and Greenability
might be used interchangeably. In this way we can preserve the
use of the term Greenability seen in [7]. Maintainability can be
analyzed according its sub-characteristics: Modularity, Reusa-
bility and Modifiability, Analyzability and Testability. The
relationship between Maintainability and Energy Efficiency
has been reported in Table 1.

TABLE I. MAINTAINABILITY AND GREENABILITY RELATIONSHIP

Quality
Attribute a

Sub-Characteristics Relation to Greenability

Maintainability

Modularity Present

Reusability Present

Analyzability Not detected

Modifiability Present

Testability Not detected

a. According to [7]

The relationship between Maintainability and Greenability

cannot be considered yet as validated. Studies on both quality
attributes suggest that likely we have an implication, but we do

not know yet if it is a positive, neutral or negative and in which
contexts it works. Some scenarios for supporting the existing
relationship between each sub-characteristic and Greenability
have been described as following:

 More modules imply more communication lines.
The presence of many modules might increase the
energy consumption. However, an optimized
modularization design can affect positively Main-
tainability so a less energy consuming mainte-
nance [7].

 In general, better design implies less energy and
time to carry out any other task of maintenance
[7].

 Reusability has likely a good impact on Greenabil-
ity. [7].

 If a system is easy to modify it does positively in-
fluence Greenability.

 Software maintenance focuses on preserving sys-

tem functionalities [7]. Preserving functionalities
is accomplished through analysis, modification
and improvement of the source code [7]. For in-
stance: software refactoring, seems to have posi-
tive influence over Greenability [7].

All the previous assumptions found in [7] are hypothesis

that attempt to qualify the implication between Maintainability
and Greenability. They all need experimentation. To summa-
rize we have the following hypothesis regarding Maintainabil-
ity and energy efficiency:

 H1- Generic statement: better design should posi-
tively affect energy consumption.

We consider “better design” regarding maintainable
solutions. This statement ceases to be generic in a
concrete architecture scenario.

 H2- Modularity affects Energy Efficiency. The
measure of that influence is determined by the
degree of modules optimization

 H3- Reusability is a quality attribute “friendly”
for energy efficiency

 H4-Modifiability is a quality attribute “ friendly”
for Energy Efficiency

 H5- Preserving functionalities through source
code improvements supports Greenability.

For “friendly” we meant that achieving modifiability or Reus-
ability increase energy savings. In other words, modifiability
or Resusability affect positively Greenability.

At this point the question is: What do those assumptions
mean in the context of architectural patterns? What do we al-
ready know on Maintainability and architectural patterns can
support us for identifying energy efficient patterns? In the fol-
lowing section we have compared the knowledge available on
architectural patterns and Maintainability to the hypothesis
derivate from [7].

A. Maintainable Architectural Patterns

At first we gathered some information on the relationship
between Maintainability (and its sub-characteristics) and archi-
tectural patterns. We consider which patterns are better for
achieving Maintainability (or Modularity, Reusability, Testa-
bility, Analyzability; Modifiability). We exclude analyzability
because in [7] no implication has been found and we have not
relevant information in the context of architectural patterns.
Regarding Testability we adopt a different approach: although
no implications have been detected in [7] we show the infor-
mation on Testability because they suggest a possible implica-
tion. Indeed, Testability often is highly supported when is pos-
sible to test single component time by time, it recalls Modulari-
ty. In a previous work (a Systematic Literature Review see [24]
and [25]2) we count Maintainability 60 times, Reusability 37,
Modularity 4, Analyzability 1 and Testability 6 appearing in
the primary study, with a relation (positive or not) with several
architectural patterns. In the following sections we describe the
interaction between the most common patterns and Maintaina-
bility. We selected nine patterns according to two of the main
taxonomies available in the literature [21] [22].

B. Layered architecture (L)

Layered architecture appears as one of the best pattern for
achieving Maintainability. In many studies we found a
positive interaction between Maintainability and layered, for
instance in [26] [27] [28] and [29]. However, those sources
stated in a general way the positive interaction. Moreover, we
have to cope with fragmented and incomplete information. For
instance, in [30] layered is described as positive for almost all
the sub-characteristics of Maintainability, except Modularity.
However, the negative interaction Layered-Modularity is not
explained. The following points explain the positive
interaction between layered architecture and Maintainability:

a) Late change in the source code do not propagate
(ripple effect) through the system [31]

b) In [32] we have a general rule that states “Main-
tainability is better achieved with low coupling
and high cohesion”. However, this statement
should be tested, especially because it is not clear
what means “low” and “high”.

c) In [33] two alternative architectures have been
described. The first one is a three-layered plug-in,
the second is a separation of three plug-in each
based on a single layer. The first option shows
more support for Maintainability due to the easier
way of detect errors; however there is a trade-off
with a sub-characteristic of Maintainability, Re-
usability. Reusability is higher in the second solu-
tion.

d) Separation of layers supports better Maintainabil-
ity [34]

e) Layered architecture allows separate modification
of layers (High modifiability) [22].

2 See also the resource online http://www.s2group.cs.vu.nl/gianantonio-me/

f) Layered architecture allows separate testing of
layers (High Testability) [22].

We can hypothesize that in Layered Maintainability has a

potential positive effect on energy efficiency. Indeed, we can
explore the H5 with the point a); if H4 is true Layered matches
that hypothesis with (e). H1 can be corroborated by specific
scenarios and concrete architecture alternative like point (c).
We can also advance new hypothesis regarding Testability,
through point (f). Point (b) introduces more knowledge on why
this pattern supports Maintainability. To conclude, layered
shows a high support for Maintainability. Considering the rela-
tionship between Maintainability and Energy Efficiency we can
state that in Layered Maintainability potentially positively af-
fects Energy Efficiency. This rule cannot be generalized be-
cause we need to consider design optimization (for instance
numbers of modules, coding design etc.) according to H1. For
instance, if we explore variants of patterns we can observe a
loss of Maintainability. This is the case of the Relaxed Layered
System described in [21]. Indeed in this system Maintainability
decreases because any layer can use services of all layers below
it, not only the next layer. Performance increases, Maintainabil-
ity worsens. There is no evidence available regarding the ener-
gy consumption in this case. To conclude, we can say, with
caution, if we are looking for a good balance for the trade-off
Maintainability-Greenability Layered Architecture Pattern is a
good option.

C. Pipes & Filters Architecture (P&F)

Pipes and Filters Architecture, like Layered, shows positive
support for Maintainability. In particular we have found posi-
tive relationship in [26] [30] and [32].We have found some
dissonant evaluations like in [29], however without providing
any example. Pipes and Filters Architecture shows high Main-
tainability because it addresses Reusability (filters can be main-
tained as individual [35]). This last pattern might be considered
as supporting positive implication Maintainability-Energy Effi-
ciency. The possibility to work on single filter prepares for
Maintainability: it happens by localizing changes and minimiz-
ing their side effects on other components [22]. This increase
Modularity and matches H2.

D. Blackboard Architecture (Bl)

Blackboard Architecture shows contradictions from the in-
formation we gathered. For instance it is considered not a good
support for Maintainability in [26] and in both [22] and [30]
shows limit in Testability. However in [21] Blackboard sup-
ports Maintainability because all modules are strictly separated
but at the same time they can all communicate through the
Blackboard. Modularity seems to be satisfied and the commu-
nication between modules optimized, so this pattern might be a
potential energy efficient pattern. It matches H2.

E. Model View Controller (MVC)

Model View Controller shows some weaknesses in address-
ing Maintainability because of coupling of views and controller
to model [22]. However this weakness seems to consider how
the MVC has been coded than an intrinsic characteristic of the

pattern. Likely if there is an implication between Maintainabil-
ity and Greenability it would match H1 and H5.

F. Presentation Abstraction Control (PAC)

Presentation Abstraction Control supports Maintanability
due to its separation of concerns [22]. It matches H2.

G. Microkernel (M)

Microkernel is very maintainable thanks its Flexibility and
Extensibility [22]. However those two characteristics are be-
yond the scope of this work. In the standard ISO 25010 those
sub-characteristics are not considered belonging to Maintaina-
bility.

H. Reflection (R)

Reflection represents a case where there is no explicit mod-
ification of the source code [22]. Matching H5.

I. Broker (Br)

Broker addresses Modifiability, components can be easily
changed [22]. It matches H4.

J. Reflective Broker Combination (R+Br)

This combination enhance separation of concerns, incorpo-
rates different control strategies for achieving Maintainability
[36]. It matches H2 and H4.

K. Final Summary

We start from the knowledge on Maintainability and
Greenability (Energy Efficiency) relationship. We distillated
some hypothesis (H1..H5) that can shape the trade-offs be-
tween Maintainability and Greenability. We compare those Hs
to the knowledge widespread in the literature on a selection of
9 architectural patterns. We recognize that some characteristics
of patterns that support Maintainability are likely good influ-
encer for Greenability, namely:

 Source code change does not affect the overall
system

 Modularity: single components like layers,
communication components or filters can be ana-
lyzed singularly. This makes easy maintenance
and likely allows energy savings.

 Modifiability: some patterns (Layered,
Pipes&Filters and Broker) are easily modifiable.

 Testability: although not detected in [7] we ad-
vance that likely exist an implication Testability-
Greenability. It follows the same behaviour of
modifiability: i.e. single components are better
testable.

However, there are some problems that need to be solved.
First, in patterns variants Maintainability’s support change (like
all the others quality attributes). So we cannot say Layered is a
green efficient pattern, because its degree of Greenability
changes from variants to variants. Perhaps it shows a “green
attitude” more than others patterns. Specifically, inside Layered
architecture, Maintainability likely positively influences
Greenability. The key seems to be that we cannot compare dif-
ferent patterns in terms of Energy Efficiency but we have to

compare different architectural solutions inside the same pat-
tern chosen. This point can be endorsed by the fact that we do
not find any pattern totally bad for Maintainability. In some
cases, the different degree of support for quality attributes in-
volves sub-characteristics.

Therefore, we need a more structured analysis inside the
same pattern and inside the same quality attribute by exploring
trade-offs between sub-characteristics. The following table
recaps the matching between hypothesis and patterns.

TABLE II. MAINTAINABILITY AND GREENABILITY RELATIONSHIP

Hypothesis Architectural Patterns a

L P&F Bl MVC PAC M R Br R+Br

H1 X X

H2 X X X X X

H3 X

H4 X X X X

H5 X X X

a. L=Layered; P&F= Pipes & Filters; Bl=Blackboard; MVC= Model View Controller;
PAC= Presentation Abstraction Control; M=Microkernel; R=Reflection;Br=Broker;

R+Br: Combination Reflective Broker

V. THREATS TO VALIDITY

The analysis presented in this short paper is not supported
yet by evidence. We generated hypotheses, and we need further
validation. Moreover our starting point shows limits. Indeed the
interaction between Maintainability and Energy Efficiency
found in [7] is not fully validated and has been applied with a
different purpose from this work. Validity is also threatened by
the contradictory and incomplete information available on ar-
chitectural patterns. Finally, we used Energy Efficiency and
Greenability interchangeably. This choice is a weakness. In-
deed the issue about those two terms requires further and rigor-
ous analysis.

VI. CONCLUSION

In this work, firstly we assume that the relationship be-
tween Maintainability and Greenability (or Energy Efficiency)
is in reality how has been described in [7]. Secondly, we com-
pare the knowledge that we have on Maintainability in software
architectural patterns with the hypothesis on the relationship
between Maintainability and Greenability. In general, seems
that all the architectural patterns that support Maintainability
encompass a potential positive relationship between Maintain-
ability and Greenability. Indeed, patterns that support Main-
tainability shows controllable and localized changes in the
source code, advantageous Modularity and Reusability. Alt-
hough it is not clear if Testability can be included, it seems that
it has the same behaviour of Modularity. If we follow the as-
sumption that those characteristics are good for Greenability
we should conclude that almost all the architectural patterns
show a positive trade-off between Maintainability and energy
consumption. Shall we conclude that they are energy efficient

architectural pattern? No, because it cannot be so simple. Ac-
cording to the information we have regarding variants, variants
of a pattern can reduce a quality attribute level. Moreover
Maintainability is composed by several sub-characteristics, in
some case conflicting among them.

The final consideration is that we need a structured analysis
where the level of Energy Efficiency of a pattern is estimated
among variants of the same pattern, and the trade-offs also ex-
amined between sub-characteristics. A candidate future work
should overcome the notion of “pure pattern”, designing an
experiment that collects energy consumption’s measure of var-
iants of the same pattern. The goal is to identify which design
decisions (changing the “pure patterns”) allow us to achieve a
positive balance between Maintainability and Greenability.

ACKNOWLEDGMENT

This work is part of the GINSENG (TIN2015-70259-C2-1-
R) project (funded by the Spanish Ministerio de Economía y
Competitividad and by FEDER-Fondo Europeo de Desarrollo
Regional) and by VILMA (PEII11-0316-2878) and GLOBAL-
IA (PEII-2014-038-P) projects (funded by the Junta de Comun-
idades de Castilla-La Mancha and by FEDER-Fondo Europeo
de Desarrollo Regional).

REFERENCES

[1] C. Calero and M. Piattini, Green in Software Engineering,
Springer, 2015.

[2] C. Calero and D.C. Torre, “How sustainable are model software
artifacts in the context of Model-Driven Software”, submitted to
MeGSuS: 3rd International Workshop on Measurement and
Metrics for Green and Sustainable Software, ESEIW, Ciudad
Real, ES, September 2016.

[3] I. Gorton, Essential software architecture, Springer Science &
Business Media, 2006.

[4] R. Kazman, G. Abowd, L. Bass and P.Clements, “Scenario-
based analysis of software architecture”, IEEE software , 13, no.
6:47-55, 1996.

[5] D.Garlan and M. Shaw, “An introduction to software
architecture”, Advances in software engineering and knowledge
engineering, 1(3.4), 1993.

[6] J. Bosch, “Software architecture: The next step” in Software
architecture, pp. 194-199, Springer Berlin Heidelberg, 2004.

[7] I.G.-R. de Guzmán, M. Piattini and R. Pérez-Castillo, “Green
software maintenance”, in Green in Software Engineering,
Springer International Publishing, 2015, pp. 205-229.

[8] R. Beik, “Green cloud computing: An energy-aware layer in
software architecture", in Engineering and Technology (S-CET),
2012 Spring Congress on, pp. 1-4. IEEE, 2012.

[9] E. A. Jagroep, J. M. E.M. van der Werf, R. Spauwen, L. Blom,
R. van Vliet, and S. Brinkkemper, “An energy consumption
perspective on software architecture”, in European Conference
on Software Architecture, Dubrovnik, HR, Springer
International Publishing, 2015, pp. 239-247.

[10] C.Stier, A. Koziolek, H.Groenda, and Ralf Reussner, “Model-
Based Energy Efficiency Analysis of Software Architectures”,
in European Conference on Software Architecture, Dubrovnik,
HR, Springer International Publishing, 2015, pp. 221-238.

[11] C. Seo, G. Edwards, S. Malek, and N. Medvidovic, “A
framework for estimating the impact of a distributed software
system's architectural style on its energy consumption”, in
Seventh Working IEEE/IFIP Conference on Software
Architecture (WICSA), Vancouver, CA, IEEE, 2008, pp. 277-
280.

[12] G. Procaccianti, P. Lago, and G. A. Lewis, “Green architectural
tactics for the cloud”, in Eleventh Working IEEE/IFIP,
Conference on Software Architecture (WICSA), Sydney, AU,
IEEE/IFIP, 2014, pp. 41-44.

[13] M. Salama and R. Bahsoon, “Quality-Driven Architectural
Patterns for Self-Aware Cloud-Based Software”, in 8th
International Conference on Cloud Computing,New York, US,
IEEE, 2015, pp. 844-851.

[14] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch,
“Sustainability in software engineering: A systematic literature
review”, in 16th International Conference on Evaluation &
Assessment in Software Engineering (EASE), Ciudad Real, ES,
IET, 2012, pp. 32-41.

[15] B. Penzenstadler, “Towards a Definition of Sustainability in and
for Software Engineering”, in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, Gyeongju, KR,
ACM, 2013, pp. 1183-1185.

[16] C. Calero, Mª Á. Moraga, M. F. Bertoa and L. Duboc, “Green
Software and Software Quality”, in Green in Software
Engineering, Springer International Publishing, 2015, pp. 231-
260.

[17] L. Bass, P. Clements and R. Kazman, Software architecture in
practice, 3rd ed. Addison-Wesley, 2012.

[18] R. Kazman et al., “A basis for analyzing software architecture
analysis methods”, in Software Quality Journal, 13.4 : 329-355,
2005.

[19] R. Kazman et al, “The architecture tradeoff analysis method”,
Proceedings of Fourth IEEE International Conference on
Engineering of Complex Computer Systems, (ICECCS),
Monterey, US, IEEE, 1998.

[20] B. Boehm. “A Spiral Model of Software Development and
Enhancement”, ACM Software Eng. Notes 11, 4 (August 1986):
pp. 22-42.

[21] F. Buschmann, R. Meunier, H. Rhonert, P. Sommerlad and M.
Stal, Pattern-Oriented software architecture: A system of
patterns, Wiley, West Sussex, England, 1996.

[22] N. Harrison and P. Avgeriou, “Leveraging architecture patterns
to satisfy quality attributes”, in proceedings of First European
Conference on Software Architecture (ECSA), Madrid, ES,
Springer LNCS, 2007, pp.263-270.

[23] ISO/IEC, ISO 25000, Software product quality requirements and
evaluation (SQuaRE), 2005

[24] G. Me, C. Calero and P. Lago, “Architectural Patterns and
Quality Attributes Interaction”, in Workshop on Qualitative
Reasoning about Software Architecture (QRASA), co-located

with Working IEEE/IFIP Conference on Software Architecture
(WICSA), Venezia, IT, 2016.

[25] G.Me, C. Calero and P. Lago, “A long way to a quality-driven
pattern-based architecting”, in European Conference on
Software Architecture (ECSA), Copenaghen, DK, article
accepted, 2016.

[26] M. Svahnberg and C. Wohlin, “An investigation of a method for
identifying a software architecture candidate with respect to
quality attributes”, in Empirical Software Engineering 10, no. 2:
pp. 149-181, 2005.

[27] E. Niemela, J. Kalaoja and P. Lago, “Toward an architectural
knowledge base for wireless service engineering”, IEEE
Transactions on software engineering 31, no. 5: 361-379, 2005.

[28] J. Berrocal, J. García-Alonso and J. M. Murillo, “Facilitating the
selection of architectural patterns by means of a marked
requirements model”, in European Conference on Software
Architecture (ECSA), Copenhagen, DK, Springer Berlin
Heidelberg, 2010, pp. 384-391.

[29] K. Babu, P. Govinda Rajulu, A. Ramamohana Reddy, and A. N.
Kumari, “Selection of architecture styles using analytic network
process for the optimization of software architecture", in arXiv
preprint arXiv:1005.4271, 2010.

[30] H. Yang, S. Zheng, W. Cheng-Chung Chu, and Ching-Tsorng
Tsai. “Linking functions and quality attributes for software
evolution”, in 19th Asia-Pacific Software Engineering
Conference, Hong Kong, HK, IEEE, 2012, vol. 1, pp. 250-259.

[31] I. Araujo and M. Weiss, “Linking patterns and non-functional
requirements”, in Proceedings of the Ninth Conference On
Pattern Language Of Programs (Plop 2002), Monticello, US,
September 8–12, 2002.

[32] G. Grau and X. Franch, “A goal-oriented approach for the
generation and evaluation of alternative architectures."
in European Conference on Software Architecture (ECSA),
Madrid, ES, Springer LNCS, 2007, pp. 139-155.

[33] D. Ameller, O. Collell, and X. Franch, “Reconciling the 3-layer
Architectural Style with the Eclipse Plug-in-based Architecture”,
in Proceedings of the 1st Workshop on Developing Tools as
Plug-ins,Hawai, US, ACM, 2011, pp. 20-23.

[34] J. Berrocal, J. García-Alonso and J. M. Murillo, “Modeling
business and requirements relationships for architectural pattern
selection”, in Software engineering research, management and
applications, pp. 167-181. Springer International Publishing,
2014.

[35] U. Banodha and K. Saxena, “Impact of Pipe and Filter Style on
Medical Process Re-engineering”, in International Journal of
Engineering Sciences 4, pp. 398-409, 2011.

[36] O. Silva, A. Garcia and C. Lucena, “The reflective blackboard
pattern: Architecting large multi-agent systems”, in International
Workshop on Software Engineering for Large-Scale Multi-agent
Systems, In Proceedings of the 24th International Conference on
Software Engineering (ICSE), Orlando, US Springer Berlin
Heidelberg, 2002, pp. 73-93.

